The BioMimetic Systems Engineering (BMSE) Lab combines experimental and computational methods in tissue engineering, bioimage analysis, and computational biology to characterise blood and blood vessel growth and disease processes. Experimental methods include biomaterial fabrication, bioreactor and microfluidic chip engineering, stem cell & tissue isolation, haematopoietic and angiogenic cultures, imaging and cytokine analyses, and more. Computational methods include microscopy and medical image segmentation, co-localisation, shape analyses, and predictive models of cell populations (differential equations), single-cells (agent based), and tissue biomechanics (finite element). Currently-running projects include:

Bone Marrow Mimicry Bioreactors for Blood Cell Therapy Manufacturing

Cell therapies are widely considered to be the next step-change in clinical medicine, curing previously uncurable disease. However, many cell therapies cost $100,000 to $3,000,000 per dose, an expense which patients and healthcare systems cannot afford. If we could manufacture lab-grown cell therapies as efficiently as our body does, we could reduce the cost of cell therapies 10x-100x and deliver more curative treatments to more patients in need. Specifically, we are using our body's bone marrow as an inspiration for growing blood cell therapies such as blood stem cells (HSPCs) and red blood cells (RBCs). 

Researchers: Astrid Nausa Galeano, Rose Ann Franco, Susana Costa Maia. Partners: Australian Red Cross Lifeblood, Queensland University of Technology.

High-Content Microphysiological Systems for Cell Culture Screening

3D culture systems can grow greater numbers of higher-quality cells at lower costs than traditional liquid suspension or 2D cultures, however the adoption of 3D culture systems in biopharmacuetical industries remains limited due to current dependenance on culture high content screening (HCS). Our lab is engineering the first experimental platforms and compuational models to preform HCS on 3D cell cultures for process optimisation and drug screening. Specifically, we are engineering live-imaged high-throughput hydrogel microchip platforms to optimise stem cell expansion and angiogenesis. 

Researchers: Rose Ann Franco, Ryan McKinnon, Ashley Murphy. Partners: Queensland Cord Blood Bank at the Mater. 

Additive Manufacturing to Predict Patient-Specific Cardiovascular Disease

The ability to diagnose and medically or surgically treat cardiovascular disease is particularly dependent on the geometric anatomy of our body's vessels. Additive manufacturing leverages medical imaging, computational simulations, and 3D printing to fabricate patient-specific models of cardiovascular disease useful for identifying disease, predicting disease progression, or simulating treatments. Specifically, we are computationally simulating and 3D printing perfusable cell culture models to simulate intracranial aneurysm rupture risk and peripheral artery graft success.

Researchers: Chloe de Nys, Sabrina Schoenborn, Ryan McKinnon. Partners: Metro North Hopsitals, Herston Biofabrication Institute, Princess Alexandra Hospital, Queensland University of Technology.